DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Friday 1 July 2016

Metoprolol lactose adduct

Image for unlabelled figure. Mass spectrometry was performed for this isolated impurity by ESI technique in positive mode. The positive DI-MS spectrum  of isolated impurity exhibited molecular ion peak as [M + H]+ at m/z 592.29 and as sodium adduct [M + Na]+ at m/z 614.28. The MS/MS data displayed a dominant fragment at m/z 574.28 which is 17 amu less than the molecular ion peak indicating a removal of the hydroxyl group.
This indicates that the impurity is Metoprolol-lactose adduct as proposed. The high resolution mass proposed
the probable molecular formula C27H45NO13.

MS and MS/MS spectra of impurity.
The 1H NMR spectrum of this impurity displayed signals at δ = 1.27–1.30(6H), δ = 2.73–2.76 (2H), δ = 2.95–2.98 (1H), δ = 3.12–3.18(1H), δ = 3.23 (3H), δ = 3.44–3.68(11H), δ = 3.73–3.77(2H), δ = 3.83–3.84(2H), δ = 4.15–4.17(3H), δ = 4.41–4.43(1H), δ = 4.64–4.67 (1H), δ = 6.68–6.90 (2H), δ = 7.15–7.17(2H)
corresponding to 37 protons, indicating the Metoprolol adduct impurity possibility as it contains total 45 protons out of which 8 protons are of hydroxyl groups of lactose.
The 1H and 13C NMR spectra of Metoprolol adduct impurity and Metoprolol tartrate  was compared and significant changes were observed. In 1H NMR spectrum of impurity additional 13 protons in aliphatic region were observed. While in 13C NMR, additional 12 carbon signals can be seen. Methylene carbons C21 and C16 were observed at 60.5 and 61.8 ppm respectively and 10 carbon signals were observed between 68.5 ppm to 103 ppm. These signals
confirmed the presence of both lactose as well as Metoprolol moieties in the impurity.
Further to confirm the exact structure of Metoprolol adduct impurity, the 2D NMR HSQC has also been reviewed (see
Supplementary Fig. S-5). It was observed that the proton in aliphatic region showing doublet at (4.41–4.43) ppm corresponds to C22 which appeared at 103 ppm. This confirms the presence of anomeric carbon of pyranose ring. Also C17 appeared at 95.4 ppm found to be quaternary carbon which confirms the presence of furanose anomeric carbon. Proton corresponding to C20 found to shown multiplet in the region of (4.15–4.17) ppm which confirms that C20 is from furanose ring. Apart from these interactions, carbon signals appeared at 70.7, 72.2, 74.5, 61.8 ppm confirming the arabinosyl moiety.
Based on the above observations it has been confirmed that the impurity is Metoprolol lactose adduct and the ‘glucose moiety’ of lactose present in adduct exists in furanose form




The 1H  Metoprolol tartrate




The  13C NMR spectra Metoprolol tartrate
.

The 1H spectra of Metoprolol adduct impurity

The13C NMR spectra of Metoprolol adduct impurity

 
HSQC spectra of Metoprolol adduct impurity

 

 

 

Identification, synthesis, isolation and characterization of new impurity in metoprolol tartrate tablets

  • Ipca Laboratories Ltd., Chemical Research Division, Kandivali Industrial Estate, Kandivali (W). Mumbai 400067, India
 http://www.sciencedirect.com/science/article/pii/S0731708515301357
buchireddy reguri

Buchireddy Reguri

Executive Vice President, IPCA Laboratories
R. Buchi Reddy




Executive Vice President

Ipca laboratories Ltd
 
 
 Dr. Leena Gupta

Dr. Leena Gupta

Senior Research Executive at IPCA
 

 

Dr.Kishor More

Dy.General Manager at Ipca Laboratories Limited
 
Mukesh Jha.

Mukesh Jha

Ph.D.
Research Executive
Ipca Laboratories, Mumbai · CRD
 


Laki Magar
///////////





 chagos



 .

 
 

 
 


 

 
 

 
 






 

/////////////

No comments:

Post a Comment