DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Thursday, 13 July 2017

2,2,5,5-Tetramethyltetrahydrofuran (TMTHF): a non-polar, non-peroxide forming ether replacement for hazardous hydrocarbon solvents



2,2,5,5-Tetramethyltetrahydrofuran (TMTHF): a non-polar, non-peroxide forming ether replacement for hazardous hydrocarbon solvents
Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC01392B, Paper
Fergal Byrne, Bart Forier, Greet Bossaert, Charly Hoebers, Thomas J. Farmer, James H. Clark, Andrew J. Hunt
An inherently non-peroxide forming ether solvent, 2,2,5,5-tetramethyltetrahydrofuran (2,2,5,5-tetramethyloxolane), has been synthesized from readily available and potentially renewable feedstocks, and its solvation properties have been tested

2,2,5,5-Tetramethyltetrahydrofuran (TMTHF): a non-polar, non-peroxide forming ether replacement for hazardous hydrocarbon solvents

 

http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C7GC01392B?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

Abstract

An inherently non-peroxide forming ether solvent, 2,2,5,5-tetramethyltetrahydrofuran (2,2,5,5-tetramethyloxolane), has been synthesized from readily available and potentially renewable feedstocks, and its solvation properties have been tested. Unlike traditional ethers, its absence of a proton at the alpha-position to the oxygen of the ether eliminates the potential to form hazardous peroxides. Additionally, this unusual structure leads to lower basicity compared with many traditional ethers, due to the concealment of the ethereal oxygen by four bulky methyl groups at the alpha-position. As such, this molecule exhibits similar solvent properties to common hydrocarbon solvents, particularly toluene. Its solvent properties have been proved by testing its performance in Fischer esterification, amidation and Grignard reactions. TMTHF's differences from traditional ethers is further demonstrated by its ability to produce high molecular weight radical-initiated polymers for use as pressure-sensitive adhesives.
STR1
[TMTHF].
1H NMR (400 MHz, CDCl3): δ 1.81 (s, 4H), 1.21 (s, 12H);
13C NMR (400 MHz, CDCl3): δ 29.75, 38.75, 80.75;
IR 2968, 2930, 2968, 1458, 1377, 1366, 1310, 1265, 1205, 1144, 991, 984, 885, 849, 767 cm−1;
m/z (%): (ESI–MS) 128 (40) [M+ ]
STR1

Fergal Byrne

Fergal Byrne

PHD Researcher at Green Chemistry Centre of Excellence

University of York

York, United Kingdom

University of York
Green Chemistry Centre of Excellence, University of York, York YO10 5DD, UK 

Andrew Hunt

Andrew Hunt

Catalysis, Environmental Chemistry, Green Chemistry

PhD.
////////////
NMR predict
[TMTHF].
1H NMR (400 MHz, CDCl3): δ 1.81 (s, 4H), 1.21 (s, 12H);
STR1 STR2
13C NMR (400 MHz, CDCl3): δ 29.75, 38.75, 80.75;