DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
Showing posts with label VALSARTAN. Show all posts
Showing posts with label VALSARTAN. Show all posts

Thursday 11 August 2016

Synthesis of a Precursor to Sacubitril Using Enabling Technologies


Abstract Image
An efficient preparation of a precursor to the neprilysin inhibitor sacubitril is described. The convergent synthesis features a diastereoselective Reformatsky-type carbethoxyallylation and a rhodium-catalyzed stereoselective hydrogenation for installation of the two key stereocenters. Moreover, by integrating machine-assisted methods with batch processes, this procedure allows a safe and rapid production of the key intermediates which are promptly transformed to the target molecule (3·HCl) over 7 steps in 54% overall yield.
Synthesis of a Precursor to Sacubitril Using Enabling Technologies

Continuous flow methodologyhas been used to enhance several steps in the synthesis of a precursor to Sacubitril.
In particular, a key carboethoxyallylation benefited from a reducedprocessing time and improved reproducibility, the latter attributable toavoiding the use of a slurry as in the batch procedure. Moreover, in batchexothermic formation of the organozinc species resulted in the formation ofside products, whereas this could be avoided in flow because heat dissipationfrom a narrow packed column of zinc was more efficient

Synthesis of a Precursor to Sacubitril Using Enabling Technologies

 Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
 Novartis Pharma AG, Postfach, 4002 Basel, Switzerland
Org. Lett.201517 (21), pp 5436–5439
DOI: 10.1021/acs.orglett.5b02806, http://pubs.acs.org/doi/10.1021/acs.orglett.5b02806
*E-mail: svl1000@cam.ac.uk.
Figure
 
LCZ696 (sacubitril/valsartan) is a first-in-class combination of the angiotensin II receptor-blocker valsartan and the neprilysin inhibitor sacubitril. A recent head-to-head comparison of LCZ696 with enalapril in a double-blind trial was stopped early because the boundary for an overwhelming benefit with LCZ696 was crossed.As a result of this, LCZ696 was reviewed under the FDA’s priority review program and was granted approval on the July 7, 2015 to reduce the risk of cardiovascular death and hospitalization for HF in patients with chronic HF (NYHA Class II–IV) and reduced ejection fraction.
LCZ696 is a complex aggregate comprised of the anionic forms of sacubitril and valsartan, sodium cations, and water molecules in the molar ratio of 1:1:3:2.5, respectively
Figure
(2R, 4S)-5-(4-biphenylyl)-4-amino-2-methylpentanoic acid ethyl ester hydrochloride 3
To a stirred solution of (2R, 4S)-5-(4-Biphenylyl)-2-methyl-4-(tert-butylsulfinylamino)valeric acid 14 (50.0 mg, 134 μmol) in absolute ethanol (0.4 mL) at 0 °C was added thionyl chloride (20 μL, 268 μmol). The reaction mixture was stirred at room temperature for 3 h. The solvent was removed to yield 46.0 mg (99%) of titled compound 3 as a white solid.
1 H NMR (600 MHz, DMSO-d6) δ 8.17 (br. s, 3H), 7.66 (dd, J = 8.0, 7.4 Hz, 4H), 7.47 (t, J = 7.7 Hz, 2H), 7.36 (2 H, t, J = 7.4 Hz, H15, 2H), 7.36 (1 H, d, J = 8.0 Hz, H15), 3.99 (q, J = 7.1 Hz, H18), 3.42 – 3.36 (m, H4, 1H), 3.04 (dd, J = 13.8, 5.5 Hz, 1H), 2.81 (dd, J = 13.8, 8.1 Hz, 1H), 2.77 – 2.70 (m, 1H), 1.86 (ddd, J = 14.3, 9.1, 5.0 Hz, 1H), 1.59 (ddd, J = 13.8, 8.1, 5.4 Hz, 1H), 1.10 (t, J = 7.1 Hz, 3H), 1.07 (d, J = 7.1 Hz, 3H).
13C NMR (151 MHz, CDCl3) δ 174.7, 139.7, 138.7, 135.5, 130.0, 129.0, 127.4, 126.8, 126.5, 60.1, 50.4, 38.1, 35.5, 35.0, 17.5, 13.9.
HRMS (ESI+ , m/z [M+H]+ ) Calcd for C20H26NO2 312.1964; found 312.1967;
HPLC. 97:3 d.r. (Daicel Chiralpak AD-H column; isocratic n-hexane/ethanol/methanol/trimethylamine 80/10/10/0.2; 40 o C; flow rate = 0.8 mL min-1 ; λ = 254 nm; run time = 23 mins; tR (2R, 4S) 97.07%; tR (2S,4R) 0.21%; tR (2S, 4S) 2.32%; tR (2R,4R) 0.40%)

13C NMR Ethyl (2R,4S)-5-(4-biphenylyl)-4-amino-2-methylpentanoate hydrochloride 3
str1
str2 str1
////////////Synthesis, Precursor,  Sacubitril, Enabling Technologies, flow synthesis, valsartan, LCZ69

Wednesday 25 September 2013

VALSARTAN SPECTRAL DATA

 
VALSARTAN

mp 114–118 °C; 

1H NMR (400 MHz, DMSO-d6): δ 12.6 (brs, 1H), 7.72 (m, 4H), 7.24 (m, 1H), 7.15 (m, 2H), 6.94 (m, 1H), 4.58 (m, 1H), 4.40 (m, 1H), 3.33 (m, 1H), 2.25 (m, 1H), 1.52 (m, 6H), 0.9 (m, 3H), 0.84 (m, 3H), 0.74 (m, 3H); 



13C NMR (100 MHz, DMSO-d6): δ 174.0, 172.4, 171.8, 141.7, 138.2, 131.54, 131.1, 131.0, 129.3,128.8, 128.2, 127.4, 126.7, 70.3, 63.4, 49.9, 32.9, 28.05, 27.3, 22.2, 20.6, 14.2; 


ESIMS: m/z calcd [M]+: 435; found: 436 [M+H]+; HRMS (ESI): m/z calcd [M]+: 435.5187; found: 435.5125 [M]+




US 7439261 B2

1H-NMR (CDCl3) (0.80-1.15 (m, 9H); 1.20-1.50 (m, 2H); 1.60-1.80 (m, 2H); 2.60 (t, 2H); 2.65-2.80 (m, 2H), 3.70 (d, 1H), 4.10 (d, 0.3 H), 4.30 (d, 0.7 H), 4.90 (d, 0.7H), 5.2 (d, 0.3H); 7.00 (d, 0.3H); 7.10-7.20 (m, 4H), 7.40-7.60 (m, 3H), 7.85 (d, 0.7 H).



SHORT DESCRIPTION




Valsartan, N-(1-oxopentyl)-N-[[2′-(1H-tetrazol-5-yl)[1,1′-biphenyl]-4-yl]methyl]-L-valine, is a known anti-hypertensive agent having the following formula (I):
Figure US07439261-20081021-C00001
Valsartan and its preparation are disclosed in U.S. Pat. No. 5,399,578, in particular in Example 16. One of the synthetic routes according to U.S. Pat. No. 5,399,578 can be schematically represented as follows:
Figure US07439261-20081021-C00002
Figure US07439261-20081021-C00003
The synthetic pathway comprises various steps, among which:

    • coupling of compound (3) with 2-chlorobenzonitrile to obtain compound (4),
    • radicalic bromination of compound (4) to give compound (5),
    • transformation of the brominated derivative (5) into the respective aldehyde derivative (6),
    • reductive alkylation of compound (6) to obtain intermediate (8),
    • acylation of compound (8) to obtain intermediate (9),
    • conversion of the cyano group to the tetrazole group to afford intermediate (10),
    • deprotection of the carboxylic group by hydrogenolysis to obtain valsartan.
  • It is marketed as the free acid under the name DIOVAN. DIOVAN is prescribed as oral tablets in dosages of 40 mg, 80 mg, 160 mg and 320 mg ofvalsartan.
  • [0004]
    Valsartan and/or its intermediates are disclosed in various references, including: U.S. Pat. Nos. 5,399,578 ,5,965,592 5,260,325 6,271,375 WO 02/006253 WO 01/082858 WO 99/67231 WO 97/30036 , Peter Bühlmayer, et. al., Bioorgan. & Med. Chem. Let., 4(1) 29-34 (1994), Th. Moenius, et. al., J. Labelled Cpd. Radiopharm., 43(13) 1245 - 1252 (2000), and Qingzhong Jia, et. al., Zhongguo Yiyao Gongye Zazhi, 32(9) 385-387 (2001), all of which are incorporated herein by reference.
  • [0005]
    Valsartan is an orally active specific angiotensin II antagonist acting on the AT1 receptor subtype. Valsartan is prescribed for the treatment of hypertension. U.S. Pat. No. 6,395,728 is directed to use of valsartan for treatment of diabetes related hypertension. U.S. Pat. Nos. 6,465,502 and 6,485,745 are directed to treatment of lung cancer with valsartan. U.S. Pat. No. 6,294,197 is directed to solid oral dosage forms of valsartan
GOOD ARTICLES

http://users.uoa.gr/~tmavrom/2009/valsartan2009.pdf

http://www.acgpubs.org/JCM/2009/Volume%203/Issue%201/JCM-0908-14.pdf

https://www.beilstein-journals.org/bjoc/single/printArticle.htm?publicId=1860-5397-6-27 REPORTS
 mp 114–118 °C; 1H NMR (400 MHz, DMSO-d6): δ 12.6 (brs, 1H), 7.72 (m, 4H), 7.24 (m, 1H), 7.15 (m, 2H), 6.94 (m, 1H), 4.58 (m, 1H), 4.40 (m, 1H), 3.33 (m, 1H), 2.25 (m, 1H), 1.52 (m, 6H), 0.9 (m, 3H), 0.84 (m, 3H), 0.74 (m, 3H); 13C NMR (100 MHz, DMSO-d6): δ 174.0, 172.4, 171.8, 141.7, 138.2, 131.54, 131.1, 131.0, 129.3,128.8, 128.2, 127.4, 126.7, 70.3, 63.4, 49.9, 32.9, 28.05, 27.3, 22.2, 20.6, 14.2; ESIMS: m/z calcd [M]+: 435; found: 436 [M+H]+; HRMS (ESI): m/z calcd [M]+: 435.5187; found: 435.5125 [M]+




Valsartan 

Structural formula

UV - Spectrum


Conditions : Concentration - 1 mg / 100 ml
The solvent designation schedule
methanol 
water 
0.1М HCl 
0.1M NaOH 
maximum absorption249 nm250 nm248 nm251 nm
309302289311
e13400131001260013500

IR - spectrum

Wavelength (μm)
Wave number (cm -1 )

NMR spectrum


references


  • UV and IR Spectra. H.-W. Dibbern, R.M. Muller, E. Wirbitzki, 2002 ECV
  • NIST/EPA/NIH Mass Spectral Library 2008
  • Handbook of Organic Compounds. NIR, IR, Raman, and UV-Vis Spectra Featuring Polymers and Surfactants, Jr., Jerry Workman. Academic Press, 2000.
  • Handbook of ultraviolet and visible absorption spectra of organic compounds, K. Hirayama. Plenum Press Data Division, 1967.


Image result for VALSARTAN SYNTHESIS





CLIP

Image result for VALSARTAN SYNTHESIS



Scheme 2: (a) Et3N, CH2Cl2, 0 °C, 95%; (b) NaH, THF, 70%; (c) n-BuLi, 25 °C, THF, anhyd ZnCl2, −20 °C, Q-phos, Pd(OAc)2, 75 °C, 2 h, 80%; (d) 3 N NaOH, MeOH, reflux, 90%.

http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-6-27

valsartan 8; mp 114–118 °C; 1H NMR (400 MHz, DMSO-d6): δ 12.6 (brs, 1H), 7.72 (m, 4H), 7.24 (m, 1H), 7.15 (m, 2H), 6.94 (m, 1H), 4.58 (m, 1H), 4.40 (m, 1H), 3.33 (m, 1H), 2.25 (m, 1H), 1.52 (m, 6H), 0.9 (m, 3H), 0.84 (m, 3H), 0.74 (m, 3H); 13C NMR (100 MHz, DMSO-d6): δ 174.0, 172.4, 171.8, 141.7, 138.2, 131.54, 131.1, 131.0, 129.3,128.8, 128.2, 127.4, 126.7, 70.3, 63.4, 49.9, 32.9, 28.05, 27.3, 22.2, 20.6, 14.2; ESIMS: m/z calcd [M]+: 435; found: 436 [M+H]+; HRMS (ESI): m/z calcd [M]+: 435.5187; found: 435.5125 [M]+












/////////