DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Tuesday 4 April 2017

Regioselective acylation and carboxylation of [60]fulleroindoline via electrochemical synthesis

    str5
3a (11.2 mg, 38%) were obtained along with unreacted 1 (1.1 mg, 4%).
1H NMR (400 MHz, CS2/CDCl3) δ 8.39 (d, J = 8.0 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 7.41 (d, J = 7.8 Hz, 1H), 7.29 (s, 1H), 7.04 (d, J = 7.8 Hz, 1H), 5.95 (s, 1H), 2.76 (s, 3H), 2.52 (s, 3H);
13C NMR (100 MHz, CS2/CDCl3, all 1C unless indicated) δ 196.06 (C=O), 167.78 (C=O), 152.39, 152.08, 151.38, 150.04, 149.83, 149.22, 148.81, 148.52, 148.26, 147.93, 147.86, 147.73, 147.36, 147.18, 147.14 (2C), 146.91, 146.86, 146.41, 146.40, 145.99 (2C), 145.95, 145.92, 145.53, 145.37, 145.33, 144.82 (2C), 144.80, 144.72, 144.54, 144.42, 144.31, 144.14, 143.84, 143.65, 143.42, 143.31, 143.05, 142.13, 141.93, 141.79, 141.72 (2C), 141.69, 141.55, 141.35, 141.24, 141.10, 140.63, 140.14, 139.93 (aryl C), 138.84, 137.70, 137.54 (aryl C), 137.47, 137.38, 135.44 (aryl C), 133.14 (aryl C), 129.16 (2C, aryl C), 128.72 (2C, aryl C), 128.61 (aryl C), 125.80 (aryl C), 125.42 (aryl C), 115.11 (aryl C), 83.58 (sp3 -C of C60), 69.89 (sp3 -C of C60), 62.42 (sp3 -C of C60), 56.81 (sp3 -C of C60), 26.84, 22.25;
UV-vis (CHCl3) λmax nm (log ε) 251.0 (5.1), 318.5 (4.6), 403.5 (4.0), 440.0 (3.9), 525.5 (3.2), 703.5 (2.5);
FT-IR ν/cm-1 (KBr) 2922, 2860, 1668, 1599, 1499, 1439, 1366, 1304, 1236, 1180, 1086, 1020, 964, 858, 802, 748, 691, 604, 528;
MALDI-TOF MS m/z calcd for C76H16NO2 [M+H]+ 974.1176, found 974.1165.

Regioselective acylation and carboxylation of [60]fulleroindoline via electrochemical synthesis

Abstract

A regioselective and highly efficient electrochemical method for direct acylation and carboxylation of a [60]fulleroindoline has been developed. By using inexpensive and readily available acyl chlorides and chloroformates, both keto and ester groups can be easily attached onto the fullerene skeleton to afford 1,2,3,16-functionalized [60]fullerene derivatives regioselectively. In addition, a plausible mechanism for the formation of fullerenyl ketones and esters is proposed, and their further transformations under basic and acidic conditions have been investigated.

1,5-bis-(2-furanyl)-1,4-pentadien-3-one (FAF)

A catalytic aldol condensation system enables one pot conversion of biomass saccharides to biofuel intermediates

Abstract

Producing bio-intermediates from lignocellulosic biomass with minimal process steps has a far-reaching impact on the biofuel industry. We studied the metal chloride catalyzed aldol condensation of furfural with acetone under conditions compatible with the upstream polysaccharide conversions to furfurals. In situ far infrared spectroscopy (FIR) was applied to guide the screening of aldol condensation catalysts based on the distinguishing characteristics of metal chlorides in their coordination chemistries with carbonyl-containing compounds. NiCl2, CoCl2, CrCl3, VCl3, FeCl3, and CuCl2 were selected as the potential catalysts in this study. The FIR results further helped to rationalize the excellent catalytic performance of VCl3 in furfural condensation with acetone, with 94.7% yield of biofuel intermediates (C8, C13) in 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) solvent. Remarkably, addition of ethanol facilitated the acetal pathway of the condensation reaction, which dramatically increased the desired product selectivity over the furfural pathway. Most significantly, we demonstrate for the first time that VCl3 catalyzed aldol condensation in acidic medium is fully compatible with upstream polysaccharide hydrolysis to monosaccharide and the subsequent monosaccharide isomerization and dehydration to furfurals. Our preliminary results showed that a 44% yield of biofuel intermediates (C8, C13) can be obtained in one-pot conversion of xylose catalyzed by paired metal chlorides, CrCl2 and VCl3. A number of prior works have shown that the biofuel intermediates derived from the one-pot reaction of this work can be readily hydrogenated to biofuels.
Graphical abstract: A catalytic aldol condensation system enables one pot conversion of biomass saccharides to biofuel intermediates
1,5-bis-(2-furanyl)-1,4-pentadien-3-one (FAF)
FAF is a yellow solid.1H NMR (400 MHz, CDCl3, TMS) δ 7.51 – 7.46 (m, 4H), 6.92 (d, J = 15.6 Hz, 2H), 6.69 (d, J = 3.4 Hz, 2H), 6.50 – 6.49 (m, 2H);13C NMR (100 MHz, CDCl3) δ 188.1, 151.6, 144.9, 129.2, 123.2, 115.8, 112.6

Thursday 30 March 2017

Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

 

Graphical abstract: Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation
str1
1-Phenyl-2-(phenylsulfonyl)ethan-1-one (2a) 1
1H NMR (400 MHz, CDCl3) δ 7.92 (m, 4H), 7.70 – 7.58 (m, 2H), 7.54 (t, J = 7.6 Hz, 2H), 7.48 (t, J = 7.3 Hz, 2H), 4.74 (s, 2H).
13C NMR (101 MHz, CDCl3) δ 187.9, 138.7, 135.7, 134.4, 134.2, 129.3, 129.2, 128.9, 128.6, 63.4.
References 1. Lu, Q.; Zhang, J.; Peng, P.; Zhang, G.; Huang, Z.; Yi, H.; Millercd, T. J.; Lei, A. Chem. Sci. 2015, 6, 4851.

Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

*Corresponding authors

Abstract

A copper(I)-catalyzed synthesis of β-keto sulfones through a multicomponent reaction of aryldiazonium tetrafluoroborates, 3-arylpropiolic acids, sulfur dioxide, and water was developed. This reaction proceeds through a tandem radical process, and the sulfonyl radical, generated from the combination of aryldiazonium tetrafluoroborates with DABCO·(SO2)2, acts as the key intermediate. The transformation involves sulfonylation and decarboxylation, which allows for the efficient synthesis of the desired β-keto sulfones.
Graphical abstract: Synthesis of β-keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation

3-allyl-4H-chromen-4-one

str1
3-allyl-4H-chromen-4-one
5b (8.4 g, 45 mmol, 91% yield) as a yellow oil. GC (retention time): 3.571 min
HRMS (EI): m/z calcd for [C12H10O2]: 186,0681 (M+ ); found 186.0657.
1H-NMR (400 MHz, CDCl3 ): δ/ppm = 8.18 (dd, J=8.0, 1.7 Hz, 1H), 7.70 (t, J=1.0, 1H), 7.58 (ddd, J=8.6, 7.1, 1.7 Hz, 1H), 7.43 – 7.28 (m, 2H), 5.92 (ddt, J=16.7, 10.1, 6.7 Hz, 1H), 5.22 – 5.04 (m, 2H), 3.20 (dt, J=6.7, 1.3, 2H).
13C NMR (75 MHz, CDCl3 ): δ/ppm = 177.5, 156.6, 152.7, 134.7, 133.5, 126.0, 125.0, 123.9, 123.1, 118.1, 117.2, 29.8.
IR (Diamond-ATR, neat): /cm-1 = 3077.00 (w), 3068.00 (w), 3017.00 (vw), 2970.00 (w), 2941.00 (vw), 2900.00 (w), 1632.00 (s), 1608.00 (s), 1573.00 (m), 1464.00 (s), 1429.00 (m), 1398.00 (s), 1353.00 (s), 1321.00 (m), 1297.00 (m), 1282.00 (m), 1264.00 (w), 1226.00 (w), 1210.00 (m), 1181.00 (m), 1156.00 (s), 1141.00 (s), 1111.00 (m), 1027.00 (w), 1005.00 (m), 961.00 (m), 924.00 (s), 909.00 (s), 896.00 (s), 868.00 (w), 846.00 (s), 802.00 (m), 769.00 (s), 756.00 (vs), 712.00 (m), 690.00 (s).
mp: 34.0 - 36.0 °C

Practical Large-Scale Regioselective Zincation of Chromone Using TMPZnCl·LiCl Triggered by the Presence or Absence of MgCl2

 Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse. 5-13, 81377 München, Germany
 Research & Development, Crop Science, Bayer AG, Alfred-Nobel-Strasse 50, Building 6550, 2.08, 40789 Monheim am Rhein, Germany
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.7b00032
Abstract Image
Chromones are efficiently zincated in position C(3) in THF by using the commercially available amide base TMPZnCl·LiCl (TMP = 2,2,6,6-tetramethylpiperidyl). Additionally, in the presence of a Lewis acid such as MgCl2, zincation using TMPZnCl·LiCl occurs at C(2). These metalation reactions are carried out on a 50 mmol scale, and the metalation selectivities have been compared with the corresponding small-scale reactions (2 mmol). The resulting zinc organometallics undergo smooth reactions with various electrophiles, for example, Pd-catalyzed cross-coupling reactions or Cu-catalyzed acylations or allylations.

Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source

str1
Bis(4-methoxyphenyl)methanone
 
bis(4-methoxyphenyl)methanone (3b) The title product was purified by column chromatography and was obtained in 83% yield (110 mg). Rf = 0.3 (petroleum ether/ethyl acetate 30:1), light yellow oil.
1H NMR (400 MHz, CDCl3) δ (ppm):
7.80 (d, J = 8.8 Hz, 2H),  AROM H ORTHO TO -C=0
6.97 (d, J = 8.8 Hz, 2H),  AROM H ORTHO TO -OCH3
3.89 (s, 6H); TWO -OCH3 GPS
13C NMR (100 MHz, CDCl3) δ (ppm): 194.4, 162.9, 132.2, 132.1, 113.4, 55.5;
IR (KBr): 2957, 1671, 1593, 1260, 1093, 806 cm-1; HRMS(ESI) calc. for (M + Na+ ) 265.0844; found 265.0835.
Image result for MOM CAN TEACH YOU NMR
Image result for MOM CAN TEACH YOU NMR
MOM CAN TEACH YOU NMR

Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source

Org. Chem. Front., 2017, 4,569-572
DOI: 10.1039/C7QO00001D, Research Article
Yang Li, Dong-Huai Tu, Bo Wang, Ju-You Lu, Yao-Yu Wang, Zhao-Tie Liu, Zhong-Wen Liu, Jian Lu
By using N,N-dimethylformamide (DMF) as a CO source, nickel-catalyzed carbonylation of arylboronic acids was demonstrated as an efficient and facile protocol for the synthesis of diaryl ketones.

Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source

Abstract

By using N,N-dimethylformamide (DMF) as a CO source, the cheap metal nickel-catalyzed carbonylation of arylboronic acids was demonstrated as an efficient and facile protocol for the synthesis of diaryl ketones. Results indicated that NiBr2·diglyme was the best pre-catalyst among the investigated transitional metal salts, and excellent yields were achieved via C–H and C–N bond cleavage.
Graphical abstract: Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source
Image result for MOM CAN TEACH YOU NMR
////////////http://www.rsc.org/suppdata/c7/qo/c7qo00001d/c7qo00001d1.pdf

Monday 27 March 2017

Selective Oxidation of Benzylic C–H Using Nanoscale Graphene Oxide as Highly Efficient Carbocatalyst: Direct Synthesis of Terephthalic Acid

 Abstract Image
Nanoscale graphene oxide sheets (NGO), as activated carbocatalysts, were synthesized by a reduction size strategy and used in chemoselective oxidative conversion of benzylic C–H to the corresponding carboxylic acid. On the basis of the results of the optimization process of different parameters, 3 equiv of H2O2 for each C–H group, 100 wt % of NGO in aqueous medium, acetone as a cosolvent, and a reaction temperature of 100 °C were selected as optimum parameters.
In this optimum condition, xylenes and toluene over 24 h with good yield were converted to the corresponding carboxylic acid, and in the case of diphenylmethane and ethylbenzene, these substrates with excellent yield were converted to benzophenone and acetophenone.

Selective Oxidation of Benzylic C–H Using Nanoscale Graphene Oxide as Highly Efficient Carbocatalyst: Direct Synthesis of Terephthalic Acid

Institute of Industrial Chemistry, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535-111, Tehran, Iran
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.7b00056
 
*Tel.: +98 21 56276031. E-mail address: sedrpoushan1395@gmail.com (Alireza Sedrpoushan).
 
str1 str2 str3
///////

Thursday 23 March 2017

A Brønsted acid catalysed enantioselective Biginelli reaction


A Bronsted acid catalysed enantioselective Biginelli reaction

Green Chem., 2017, 19,1529-1535
DOI: 10.1039/C6GC03274E, Paper
Margherita Barbero, Silvano Cadamuro, Stefano Dughera
A chiral derivative of 1,2-benzenedisulfonimide, namely (-)-4,5-dimethyl-3,6-bis(o-tolyl)-1,2-benzenedisulfonimide is herein proven to be an efficient chiral catalyst in a one pot three-component Biginelli reaction.
 

A Brønsted acid catalysed enantioselective Biginelli reaction

*Corresponding authors
aDipartimento di Chimica, Università di Torino, C.so Massimo d'Azeglio 48, 10125 Torino, Italy
E-mail: stefano.dughera@unito.it
Green Chem., 2017,19, 1529-1535
A chiral derivative of 1,2-benzenedisulfonimide, namely (−)-4,5-dimethyl-3,6-bis(o-tolyl)-1,2-benzenedisulfonimide is herein proven to be an efficient chiral catalyst in a one pot three-component Biginelli reaction. In fact the yields of the target dihydropyrimidines were very high (25 examples; average 91%) and enantiomeric excesses were always excellent (14 examples; average 97%). Ultimately, we herein propose a procedure that displays a number of benefits and advantages including the total absence of solvents, mild reaction conditions, relatively short reaction times and stoichiometric reagent ratios. Target dihydropyrimidines are obtained in adequate purity, making further chromatographic purification unnecessary. Moreover, the chiral catalyst was easily recovered from the reaction mixture and reused, without the loss of catalytic activity.
 
dihydropyrimidine-2-thiones 5
(R)-(-)-Ethyl 6-methyl-4-phenyl-2-thioxo-3,4-dihydropyrimidine-5-carboxylate (5a): pale grey solid (135 mg, 98% yield); mp 201–202 °C ( from EtOH; lit17 200–202 °C). 96.4% Ee (GC connected to a J&W Scientific Cyclosil-B column; stationary phase: 30% heptakis (2,3-di-Omethyl-6-O-t-butyldimethylsilyl)-β-cyclodextrin in DB-1701), tR= 12.11 min (major), tR= 12.54 min (minor); [a]D -65.4 (c 0.1 in MeOH). 1H NMR (200 MHz, DMSO-d6): δ = 10.24 (br s, 1H), 9.55 (br s, 1H), 7.31–7.12 (m, 5H), 5.09 (d, J = 3.9 Hz, 1H), 3.92 (q, J = 7.0 Hz, 2H), 2.21 (s, 3H), 1.01 (t, J = 7.0 Hz, 3H); 13C NMR (50 MHz, DMSO-d6): δ = 174.9, 165.8, 145.7, 129.3, 128.3, 127.0, 101.3, 60.2, 54.7, 17.8, 14.7. MS (m/z, EI): 276 [M+ ] (45), 247 (40), 199 (100). IR (neat) ν (cm−1): 3311 (NH), 3112 (NH), 1665 (CO), 1195 (CS).
 
 
 
Image result for Stefano Dughera

Dughera Dott. Stefano

Tel: 0116707645
Email: stefano.dughera@unito.it
address: Department of Chemistry
Dipartimento di Chimica, Università di Torino, C.so Massimo d'Azeglio 48, 10125 Torino, Italy
R. Fu, Y. Yang, W. Lai, Y. Ma, Z. Chen, J. Zhou, W. Chai, Q. Wang, and R. Yuan, Synth. Comm., 2015, 45, 477.
 
//////////////Brønsted acid,  catalysed,  enantioselective,  Biginelli reaction, dihydropyrimidine-2-thiones